Shandong Silico Organosilicon Materials Co.,LTD Add: Daiyue Industrial Area, Taian, Shandong, China Phone: +86-0538-5076188 86-13810587138 Fax: +86-0538-5076188 Email: info@silicorex.com https://www.silicorex.com

# SILICO ORGANOSILICON



# Silico Silanes for Crosslinking PE

# Silico Organosilicon





## SILICO ORGANOSILICON

Shandong Silico Silicone Materials Co., Ltd., established in 2007, is a leading high-tech enterprise specializing in the research, development, production, and sales of silicone materials. Our core products include silicone rubber, silicone oil, silicone resin, fumed silica, and silicone intermediates. We have a fully integrated production capacity, covering everything from silicon metal powder processing to silicone monomers, intermediates, and downstream products, ensuring a complete industrial chain.

Leading Manufacturer in China's Organosilicon Industry

With over 15 years of continuous growth, Shandong Silico has become one of China's largest organosilicon enterprises. The company operates three organosilicon monomer production units, with a methyl chlorosilane monomer production capacity of 600,000 tons per year. As a key supplier of silicone deep-processing products, we offer more than 300 grades of silicone rubber, silicone oil, fumed silica, and other advanced materials.

### Why select Silico Organosilicon?

- Strong silane and silicone manufacturing capabilities built over 30+ years history.
- Flexible manufacturing facility able to handle kilograms to thousands of tons per years.
- Rapid and professional process development and scale-up capabilities.
- Offer tailored options while adhering to high quality and safety standards.



# SILICO ORGANOSILICON

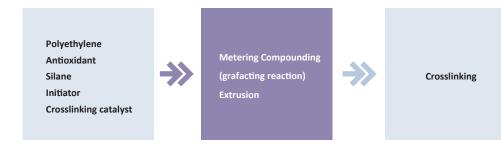
# **Back ground**

Polyethylene has been crosslinked for many years by a number of proven methods. The initial goal was to extend the maximum service temperature. However, this technology delivers many important advantages compared to non-crosslinked polymers like polyethylene or PVC:

| Property of polyethylene              | Change after cross-linking of polyethylene |
|---------------------------------------|--------------------------------------------|
| Melt index                            | Decrease                                   |
| Density                               | No changes/decrease                        |
| Molecular weight                      | Significantly increased                    |
| Tensile strength                      | No changes/slightly increase               |
| Elongation-at-break                   | Decrease                                   |
| Impact resistance                     | Significantly improved                     |
| Abrasion resistance                   | Greatly improved                           |
| Stress-crack resistance               | Greatly improved                           |
| Elastic properties                    | Greatly improved                           |
| Environmental stress crack resistance | Increase                                   |
| Resistance to slow crack growth       | Increase                                   |
| Temperature resistance                | Greatly improved                           |
| Chemical resistance                   | Significantly increased                    |

### Silico Silanes for Crosslinking PE




Three main technologies have been developed for crosslinking polyethylene. These are peroxide, radiation and silane. Our purpose is to highlight the comparative advantages of the incorporation of silanes in crosslinking.

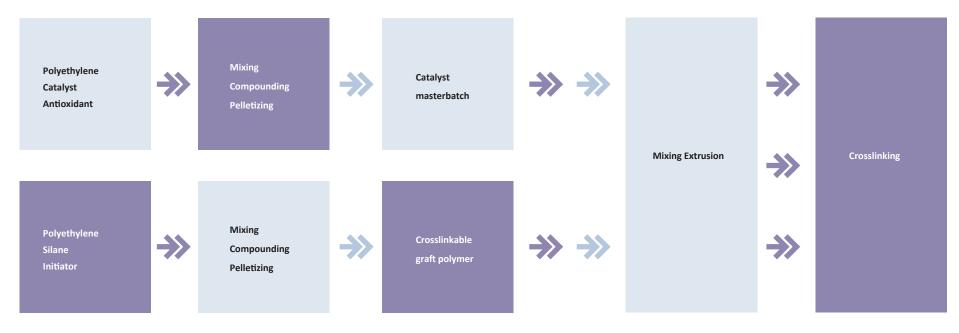
Comparison of several major cross-linking methods

| Silane                                                                                 | Peroxide                                                                                                                                                                                                              | Radiation                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Very good                                                                              | Small                                                                                                                                                                                                                 | Very good                                                                                                                                                                                                                                                                                   |
| Easy                                                                                   | Difficult                                                                                                                                                                                                             | Difficult                                                                                                                                                                                                                                                                                   |
| Standard                                                                               | Special                                                                                                                                                                                                               | Standard                                                                                                                                                                                                                                                                                    |
| High as for PE                                                                         | Low                                                                                                                                                                                                                   | High as for PE                                                                                                                                                                                                                                                                              |
| Low                                                                                    | -                                                                                                                                                                                                                     | High                                                                                                                                                                                                                                                                                        |
| Low                                                                                    | High                                                                                                                                                                                                                  | High                                                                                                                                                                                                                                                                                        |
| No limit, thickness<br>limited by speed of<br>cross-linking                            | Difficult to achieve big<br>diameters because of<br>output                                                                                                                                                            | Limited by penetration depth of electron                                                                                                                                                                                                                                                    |
| Low                                                                                    | High scrap                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |
| Slightly high                                                                          | Low                                                                                                                                                                                                                   | Low                                                                                                                                                                                                                                                                                         |
|                                                                                        | High                                                                                                                                                                                                                  | Probability of variation                                                                                                                                                                                                                                                                    |
| Wider scope for<br>formulation<br>through broad<br>processing<br>window, recyclability | Energy intensive                                                                                                                                                                                                      | Clean (pipe) because of<br>fewer additives                                                                                                                                                                                                                                                  |
|                                                                                        | Very good<br>Easy<br>Standard<br>High as for PE<br>Low<br>Low<br>No limit, thickness<br>limited by speed of<br>cross-linking<br>Low<br>Slightly high<br>Wider scope for<br>formulation<br>through broad<br>processing | Very goodSmallEasyDifficultStandardSpecialHigh as for PELowLow-LowHighNo limit, thicknessDifficult to achieve big<br>diameters because of<br>outputLowHigh scrapSlightly highLowSlightly highLowWider scope for<br>formulation<br>through broad<br>processingEnergy intensive<br>processing |



# MONOSIL

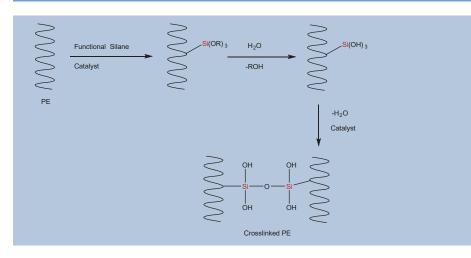



### **MONOSIL (ONE-STEP) PROCESS**

MONOSIL process is an onestep process by using a specially designed extruder with a high L: D ratio, silane is grafted onto polyethylene and the product is cross-linked in presence of moisture. In this process, polyethylene, peroxide, silane, tin catalyst and other compatible additives or fillers are added in one continuous extrusion step. This single-step process combines the raw materials, accomplishes the grafting reaction and continuously forms a fabricated part such as wire and cable or pipe.

### SIOPLAS PROCESS

In this method, a mixture of silane and peroxide is added to molten polyethylene, leading to silane grafting reaction, which is a classical free radical chain reaction involving a catalyst.

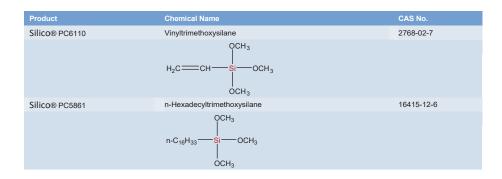

When it is intended to produce the final product, a catalyst masterbatch (consists of polyethylene, a catalyst, an antioxidant, a proper stabilizer, and an internal lubricant) is mixed with the above mentioned pellets in a typical weight ratio of 5:95, and the resultant mixture is melted, followed by extruding into the product.

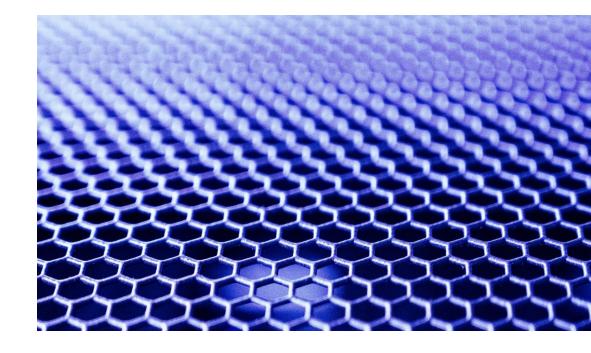


## **Silico Silanes for Crosslinking PE**



#### Principal reactions involved in silane cross-linking of polyethylene.





#### Comparison of the technologies of moisture cure.

| Process    | Advantages                                                                                                                                                                  | Disadvantages                                                                                                                                         |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sioplas    | Fast curing<br>Versatility of base resins<br>(i.e. LDPE, EVA, EPR, DPE ,etc.)<br>Low capital investment<br>No need to special equipment                                     | Two step technology<br>Limited shelf life<br>Higher raw material costs<br>Risk of pre-crosslinking on the<br>surface of pellets during storage        |
| Monosil    | Low material cost<br>Versatility of base resins<br>Fast curing<br>Shelf life not an issue                                                                                   | Limited use of some additives<br>Handling of hazardous liquid chemicals<br>High scrap rates<br>High capital investment<br>Specific equipment required |
| Dry-Silane | Potential low material costs<br>Ease of storage<br>Improved safety and handling<br>Versatility of base resins<br>Fast curing<br>Good homogeneity<br>Less gels and fish eyes | Use of additives limited or impossible<br>Moderate capital investment<br>Limited shelf life                                                           |

### **PURE SILANE**

Silico<sup>®</sup> PC6110 is used for silane crosslinking and the production of crosslinkable polyolefin compounds. Silane Silico<sup>®</sup> PC5861 is used as water scavenger and precuring retarder. They can increase shelf life as well as safety in handling and processing of silane crosslinkable compounds







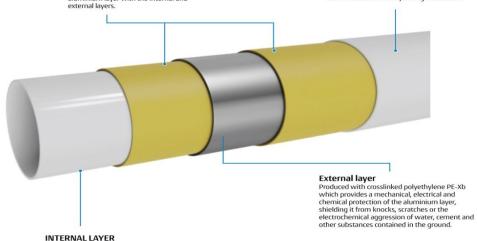
# **MULTI-COMPONENT SILANE**

| Silico PC6110Sxxx formulated silanes are fully formulated multi-component systems containing peroxide, catalyst and additives. |        |          |          |             |                   |
|--------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|-------------|-------------------|
| Silico                                                                                                                         | Silane | Peroxide | Catalyst | Antioxidant | Metal Deactivator |
| PC6110S001                                                                                                                     | x      | х        | x        |             |                   |
| PC6110SHE                                                                                                                      | х      | х        | х        |             |                   |
| PC6110SHS                                                                                                                      | x      | х        | х        | х           |                   |
| PC6110S735                                                                                                                     | х      | х        | х        | х           | x                 |
| PC6110S758                                                                                                                     | х      | х        | х        |             |                   |
| PC6110S870                                                                                                                     | х      | х        | х        | х           | х                 |
| PC6110S928                                                                                                                     | х      | х        | х        | х           | х                 |
| PC6110S963                                                                                                                     | х      | х        | х        | х           | х                 |
| PC6110S966                                                                                                                     | х      | х        | х        | х           | х                 |

| Silico     | Application                                                                                                                     |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| PC6110S001 | General use system for stabilized resins. (Monosil Process, Cables)                                                             |  |  |
| PC6110SHE  | High efficient system for LLDPE resins                                                                                          |  |  |
| PC6110SHS  | General use system for stabilized resins. (Monosil Process, Cables)                                                             |  |  |
| PC6110S735 | For low or medium volume cables on copper conductor.                                                                            |  |  |
| PC6110S758 | For Monosil Process pipes.                                                                                                      |  |  |
| PC61105870 | For halogen-free flame retardant cables and semi conductive compounds containing carbon black.                                  |  |  |
| PC6110S928 | For low or medium voltage cables on copper conductor. Provides higher grafting density and faster moisture-curing than 6110S735 |  |  |
| PC6110S963 | For low or medium volume cables on copper conductor.                                                                            |  |  |
| PC6110S966 | For low or medium voltage cables on copper conductor.                                                                           |  |  |

## **Silico Silanes for Crosslinking PE**

### **DRY SILANE**


It is similar to Monosil except that instead of using liquid additives, the silane, initiator, and catalyst are absorbed into a porous resin (typically polypropylene, ethylene vinyl acetate (EVA), high- or low density polyethylene). The Drysilane masterbatches are available with different silane loadings in the range 40 to 70 wt%. Dry-silane technology can be used for a wide range of LDPE and LLDPE grades.

| Silico   | Application  | Silane | Peroxide | Catalyst | Antioxidant | Metal Deactivator |
|----------|--------------|--------|----------|----------|-------------|-------------------|
| SIPOR-30 | Cable        | х      | х        | х        |             |                   |
| SIPOR-50 | Copper Cable | х      | х        | х        | х           | х                 |
| SIPOR-60 | Pipes        | х      | х        | х        |             |                   |
| SIPOR-70 | HFFR         | х      | х        | х        | х           | х                 |

| Silico   | Application                                                                             |
|----------|-----------------------------------------------------------------------------------------|
| SIPOR-30 | Designed for stabilized resins, or used in association with stabilized masterbatches.   |
| SIPOR-50 | Designed for copper cables. Contains full package of stabilizers and metal deactivator. |
| SIPOR-60 | Designed for pipe application, to be used with HDPE.                                    |
| SIPOR-70 | For halogen free, flame retardant, ATH-filled compounds.                                |

#### Bonding layers These are made up of a powerful adhesive that bonds the intermediate aluminium layer with the internal and

Intermediate layer This is made up of an aluminium alloy with longitudinal butt welding that guarantees a total barrier against the passage of oxygen and light and provides excellent mechanical resistance and flexibility during installation.

